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Influence of Tip mass on Dynamic Behavior
of Cracked Cantilever Pipe Conveying Fluid with Moving Mass
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In this paper, we studied about the effect of the open crack and a tip mass on the dynamic

behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is

derived by using Lagrange’s equation and analyzed by numerical method. The cantilever pipe

is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local

flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the

moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of

these factors on the vibration mode, the frequency, and the tip—displacement of the cantilever

pipe are analytically clarified.
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Nomenclature
ac . Maximum depth of crack

A . Cross—sectional area

. Half-length of crack

. Flexibility matrix

. Tip-displacement of pipe, dimensionless

JRROS

¥ . Tangential follower force

o . Moment of inertia of tip mass, dimensionless
K;  Stress intensity factor (fracture mode I)

Kz : Rotating spring coefficient

%k Number of segment

m . Mass per unit length of pipe

my . Fluid mass per unit length of pipe

Mm. Moving mass

myp . Tip mass

q : Deflection of pipe
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N

. Velocity of fluid

U ' Velocity of fluid, dimensionless

v . Velocity of moving mass

V' Velocity of moving mass, dimensionless

/m - Ratio of tip mass to its moment of inertia

6* . Half-angle of crack, dimensionless

£ ! Distance measured along pipe, dimension-
less

& . Crack position, dimensionless

1. Introduction

The effect of cracks on the dynamic behavior of
structure elements is an interesting subject of
investigation. When a structure is subjected to
damage its dynamic response is varied due to the
change of its mechanical characteristics. And the
effect of moving mass on the structures and the
machines is an important problem both in the
field of transportation and on the design of ma-
chining processes. The fluid flowing inside the
pipe acts as the concentrated tangential follower
force at the tip of the pipe, and exerts a lot of
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influences on the dynamic characteristics of a
pipe. Therefore, it is worth while to study these
factors influencing in the dynamic characteris-
tics of structure. The transfer of energy between
the flowing fluid and the pipe was discussed
by Benjamin (1961). Langthjem and Sugiyama
(1999) studied the dynamic stability of a can-
tilevered two-pipe system conveying different
fluids. A lot of studies about the dynamic beha-
vior of a beam structure under moving load and
moving mass were reported (Stanisic, 1985 ; Lee,
1996 ; Yoon et al., 2004). Recently, Mahmoud
and Zaid (2002) used an equivalent static load
approach to determine the stress intensity factors
for a single or double-edge crack in a beam sub-
jected to a moving load. Lim et al.(2003) ex-
ecuted the nonlinear dynamic analysis of a can-
tilever tube conveying fluid with system identific-
ation. Chondros and Dimarogonas (1989, 1998)
studied the effect of the crack depth on the dyna-
mic behavior of a cantilevered beam. They show-
ed that the increase of the crack depth reduces
the natural frequency of a beam. Also, they used
energy method and a continuous cracked beam
theory for analyzing the transverse vibration
of cracked beams. Ostachowicz and Krawczuk
(1991) investigated the influence of the position
and the depth of two open cracks upon the fun-
damental frequency of the natural flexural vibra-
tions of a cantilever beam. To model the effect of
the local stress in the crack, they introduced two
different functions according to the symmetry of
the crack. Closing or breathing cracks have been
investigated by Carlson (1974) and Gudmundson
(1983), who studied the effects of closing cracks
on the dynamical characteristics of an edge-crack-
ed cantilever beam. Gudmunston found that the
relative increase in natural frequencies caused by
a closing crack is much smaller than the decrease
due to an open crack. An equation of bending
motion for Euler-Bernoulli beam containing
pairs of the symmetrical open cracks was derived
by Christides and Barr (1984). The cracks were
considered to be normal to the beam’s neutral axis
and symmetrical about the plane of bending.
Dado and Abuzeid (2003) studied the modeling
and analysis algorithm for cracked Euler-Ber-

noulli beams by considering the coupling between
the bending and axial modes of vibration. This
algorithm is applied to the analysis of the vibra-
tion behavior of the cracked beam and the natural
frequency and mode shapes under the effect of
added mass and rotary inertia at the free end.
Liu et al.(2003) examined the suitability of using
coupled responses to detect damage in thin-wall-
ed tubular structures. By coupled response they
referred to the ability of a structural member with
a circumferential crack to experience composite
vibration modes (axial and bending) when excit-
ed purely laterally. Recently, Yoon and Son
(2004) investigated the effects of the open crack
and the moving mass on the dynamic behavior of
simply supported pipe conveying fluid. They stu-
died about the influences of the crack, the moving
mass and its velocity, the velocity of fluid, and
the coupling of these factors on the Timoshenko
beam.

In this study, the crack effects on the dynamic
behavior of the cracked cantilever pipe conveying
fluid with a moving mass and tip mass are in-
vestigated. The influences of a crack, a fluid and
the velocity of moving mass have been studied on
the dynamic behavior of a cantilever pipe system
conveying fluid. In addition, the influences of a
tip mass have studied on the dynamic charac-
teristics of a cracked cantilever pipe. The can-
tilever pipe conveying fluid has a circular hollow
cross—section. The crack is assumed to be always
open during vibrations.

2. Theory and Formulations

The system with a moving mass on the cracked
cantilever pipe conveying fluid with a tip mass
is shown in Fig. 1, where m, is a moving mass,
v is the velocity of the moving mass, #z is the
velocity of fluid flow, L is the total length of the
pipe, mp is a tip mass, and x. is the position of
the crack from the left-hand clamped end. Fy is
the tangential follower force due to the fluid.
Figure 2 shows a circular hollow cross-section of
the cracked section. @ and 2b are the crack depth
(severity) and the length of a crack, respectively.
Two equations of motion are derived for the two



Influence of Tip mass on Dynamic Behavior of Cracked Cantilever Pipe Conveying Fluid with Moving ---

Fig. 1 Geometry of the cracked cantilever pipe con-
veying fluid with a moving mass and tip mass

L,

L

Fig. 2 Cross section of the cracked pipe

parts of the pipe located on the left and on the
right of the cracked section.

2.1 Energy of cantilever pipe and moving
mass
By using the assumed mode method, the trans-
verse displacement w(x, ¢) of a cracked canti-
lever pipe can be assumed to be

W (xt, £) = 2 s () 2 (1) ()

where ¢,(#) are generalized coordinates which
is time dependent, u is the total number of the
generalized coordinates, and @n.(x) are spatial
mode functions of a cantilever pipe with a tip
mass missing the fluid and a moving mass. k% is the
number of the segments. ¢,z (x) can be described
to be as follows:

I) segment 1 (0<x<x.);

dm(x) =A; cos (Aux) + Az sin(Aux)
+ As cosh (Awx) +As sinh (Anx)

1) segment 2 (x.<x<L);

@n2(x) = As cos (Anx) + As sin (Anx)
+ A7 cosh (Axx) + As sinh (Axx)

()

(3)

where A, is the frequency parameter, which is
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easily calculated using the frequency equation of
a cantilever beam (Rao, 1995).
Ai, Az, -+, As can be found from the boundary
conditions. The boundary conditions of a cracked

The constants

cantilever pipe are

at x=0; w1 (x, ¢) =0 and MZO
ox
o Pwer ) o Pun(x, t)
R N L T e
0 Fwalx, 1)\ Pw.(x, 1)
ond g (BL ) =

where m, and J, are the tip mass and the mo-
ment of inertia of the tip mass, respectively. And
E is the modulus of elasticity of the pipe and [
means the moment of inertia of the pipe cross-
section.

The boundary conditions for the transverse
deflection, bending moment, shear force and slope
at the cracked section (x=x.) are

dn (xc) = Pz ()
82¢n1 (xc> _ 32¢n2 (.XC)
ox® ox?
83(]5"1 (xc> o 33¢n2 <9Cc) (5)
o oxd
8¢n2 <-7Cc) a¢nl (xc> _ El 82¢n2 (xc>
ox ox Kr ox?

where Kp is the bending stiffness. In Fig. I, the
energy of the cracked cantilever pipe with a tip

mass can be written as

~1, z[ [ (@) da(0) Vet

+ [ {bralx) dn(0) Vx| B
3 3 (L) dn (D
112 L (FaLan(0) |

Vet B3 BT [ (#a(x) aa(0) Vi | "
+%KR<A3’£)2

where (+) denotes 9/0¢, and (') represents 9/dx.
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In addition, # is the mass per unit length of the
cantilever pipe. In Eq. (7), the quantity

dws(x, t) | dwi(x, ¢t) |
dx |x,=0 dx

Aye= (8)

|x1=xc
represents the jumps in the rotation. The kinetic
energy of a moving mass can be expressed as
1 L2 2 2
Tn=—mn 2 2 {0*q5 (1)
n=1k=1

+ZUQn(t) dn(t) Drr (xm) Dun (-Xm)
+ 5 (1) B (xm) +0°}

;zzk (-xm)

(9)

Since the horizontal velocity of a moving mass is
v, the horizontal displacement of a moving mass
Xm 1S

xm:fm(t):fotv dt (0<xn<L) (10)

2.2 Work and energy due to the fluid flow
The kinetic energy of the fluid flow inside the
pipe can be expressed as

l .
Ti= 7%2

n=1k=1

8| [0 2 0) 1010 B ) ) .
11
+{¢nk(xf> qn(t) }}dxf:| (xy=ut, 0<x;<L)

where mi, is the fluid mass per unit length of a
pipe. The work of a follower force due to the fluid
discharge is divided into two kinds of work, one
is the work done by conservative force compo-
nent, and the other is the work done by non-
conservative force component. The work W, due
to the conservative component of a tangential
follower force is

N y
0—7221 Z/ msu {¢nk xf qn }dxf (12)

The work & W due to the non-conservative com-
ponent of a follower force is

S Wye= meuz{cb L) ¢n2(L)} gu(t) 0gn(t) (13)

2.3 Crack modeling

Consider the bending vibrations of a uniform
Euler-Bernoulli beam in the x —y plane, which is
assumed to be a plane of symmetry for any cross-
section. The crack is assumed to be always open

during vibrations. The additional strain energy
due to the crack can be considered in the form of
a flexibility coefficient expressed in terms of the
stress intensity factor, which can be derived by
Castigliano’s theorem in the linear elastic range.
Therefore the local flexibility in the presence of
the width 24 of a crack is defined by

"F%J*apapgf J (@ dadz) (14)

where P is the load in the same direction as the
displacement and J (@) is the strain energy densi-
ty function. The function is

J (@) :F(KIP+KIM>2 (15)

where E*=FE/(1—y3) for the plane strain, and
Vp is Poisson’s ratio. Kp and K are the stress
intensity factor for the fracture mode (I) due to
force P and moment M, respectively. The stress
intensity factors are given by

KIP oDz V n'RHC Ft ﬁc

2 Rt
(16)

M —
KIMZM\/ RO, Fy, (0:)

where R=(R,+ R;)/2 is the mean radius. &, is
the half-angle of the total through-wall crack,
and

F.(6)= +At[5.3303<6> +18. 773(%)424}
(17)

F.(6) =1 +At[4.5967 <%>L5+2.6422 <%>4.24}

where
0.25
At=<0.125t£*0.25> for SSfSIO
p
(18)

R 0.25 R
At:<0.4f—3.0> for 10<—<20

le tP

where f#p is the thickness of the pipe. Substitu-
4), the
flexible matrix due to the crack can be obtained.

ting equations (15)-(18) into equation (1

2.4 Equation of motion

24.1 Dimensionless equation of motion
The equation of motion of the system is ob-
tained by substituting the above work and energy
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functions into the Lagrange’s equation.
For simplicity, the following dimensionless
parameters are introduced :

gy [Pt [EL
=T &= —ul\[Fre o=z

U=uL Sc

Mn= mL’

Wlf Mp— mMp

- mmL
V=v Mf mL

KL
1=
Hc MP

*__ Uc MpLZ
1% o = 7 7,

Jo

mL?

Enm =x—'”— oL z', K=

(19)

where m is the mass per unit length of the can-
tilever pipe. The dimensionless w (x, #) is given
by

== 31y (1) () (20)

Therefore, the dimensionless equation of motion
is obtained matrix form as follows :

Md+Cd+Kd=0 (21)

where (-) denotes 9/dr. The matrices of the
equation (21) can be written as follows :

~55( [
0 [P hal8) det M) (222)
FMia1) +T5{ Sl D]

C:ﬁ‘. é‘{Mf/OL;%{fﬁk(ff)}dff

n=1k=1

(22b)
d (4
+ ML $ou )}
K= 3] [ (o0 e e V-l
‘I’%{qﬁnk(gm) } ¢;lk<ém) } - VZ{ ¢;zk<5m> }2
— thid
HIGU [ 6@ lgue) e

+(gul&))(e) | dE
U [ {ul Pt Udall) ol
+Ki{$al6=0) - $u(6=8 |

where (') stands for 9/0&, L¥=E&; and Li=1.

2.4.2 Modal formulation
The equation (21) can be transformed into the
following equation :

M*5+K*5=0 (23)
where

« MO . | CK raoar
M _[0 I],K _[_I 0}, p—[dd)” (4

where I represents a unit matrix. For the complex
modal analysis, it is assumed that 2 is a harmonic
function of r expressed as

n=¢ec"0 (25)
where A is the eigenvalue, and @ is the corre-
sponding mode shape. From the eigenvalues in

the equations (23)-(25
obtained.

), the frequencies can be

3. Numerical Results and Discussion

In this study, the dynamic behavior of the
cracked cantilever pipe conveying fluid inluenc-
ed by the moving mass, the crack severity ratio 6*
(=¢/n), tip mass and the position ratio of the
crack &.(=x¢/L).
order Runge-Kutta method. To illustrate this re-

It is computed by the forth

sponse, the length of the pipe L =1 m, out- radius
R,=0.03 m and in-radius R;=0.02 m were con-
sidered (Young’s modulus=210 GPa, material
density=7860 kg/m®).

In this study, we have studied the dynamic
behavior of the cracked cantilever pipe conveying
fluid for the first mode of vibration. And the
dimensionless velocity of the moving mass is
constant as 6.8E-3(y=1m/s).

3.1 Results for without tip mass

Figure 3 shows the dimensionless tip—displace-
ment of a cracked cantilever pipe conveying fluid
with U=0.5. The dimensionless velocity of mov-
ing mass is 6.8E-3. The horizontal axis is the
scale of time, and the axis of the ordinates are the
scale of dimensionless tip-displacement of the
cracked cantilever pipe. Figure 3 (a) represents
the effect of crack position on the tip-displace-
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ment of the cantilever pipe for M,=0.3 and

*=0.2. The crack position from the left-hand
clamped end gradually moved to free end of the
pipe with decreasing of the tip-displacement of
the cantilever pipe conveying fluid. The difference
of maximum tip-displacement of the cracked pipe
in the two case of the crack position &,=0.1
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(c) Effect of moving mass (§*=0.15, £,=0.3)
Fig. 3 Dimensionless tip—displacement of cantilever
pipe conveying fluid (V=6.8E-3, U=0.5)
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and £,=0.5 is about 14.7%. The variation of
tip-displacement of the cracked pipe according
to the crack severity is shown in Fig. 3(b). In
Fig. 3(b), the crack position is 0.3. Generally, the
tip-diaplacement of the cracked pipe is propor-
tional to the crack severity. As the crack severity
increases, the time that makes the maximum tip-
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Fig. 4 Frequency of cantilever pipe conveying fluid
(V=6.8E-3, U=0.5)
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displacement of the cracked pipe is delayed. In
the two case of §*=0.10 and #*=0.25, the time
that appears the maximum tip—displacement of
the cracked cantilever pipe is 1.51 sec and 2.13
sec, respectively. Figure 3(c) shows the dimen-
sionless tip—displacement of a cracked cantilever
pipe conveying fluid according to the moving
mass. In Fig. 3(c), the cracke position and crack
severity are 0.3 and 0.15, respectively. In this
curves, as the moving mass increases, the maxi-
mum tip—deflection of the cracked cantilever pipe
conveying fluid is increased. Figure 4 represents
the frequencies of a cracked pipe coneying fluid
with the moving mass for the first mode. The
horizontal axis is the scale of position of moving
mass, and the axis of the ordinates are the scale
of frequency of the cracked cantilever pipe. Fig-
ure 4(a) shows the frequency of the cantilever
pipe according to the crack position for M»=0.3
and 6*=0.15.

When the crack severity is constant, the fre-
quency of the cantilever pipe conveying fluid is
getting small as the moving mass moves to the
free end of the pipe. The crack position from the
left-hand clamped end gradually existed to the
free end of the pipe with increasing the frequency
of the cantilever pipe conveying fluid. Figure 4
(b) shows the effect of the crack severity on the
frequency of the cracked cantilever pipe. The
crack position is 0.3. The frequency of the can-
tilever pipe conveying fluid is in inverse propor-
tion to the crack severity. The difference of natu-
ral frequencies of the cantilever pipe in the two
case of #*=0 and #*=0.2 is about 12.2%. And
when position of the moving mass exists in the

free end of cantilever pipe conveying fluid, the
differecne of frequencies of the cantilever pipe is
about 6.72%. The variation of frequency of the
cracked cantilever pipe conveying fluid according
to the moving mass is shown in Fig. 4(c). In
curves, the position and severity of a crack are
0.3 and 0.15, respectively. When M,=0, the dif-
ference of the natural frequency of the cantilever
pipe between cracked pipe (6*=0.2) and un-
cracked pipe is about 11.15%. When the position
of the moving mass exists in the free end of can-
tilever pipe conveying fluid, the frequency of the
cantilever pipe conveying fluid is more sensi-
tive to the moving mass than to the effect of the
crack. Table 1 represents a comparison between
the present results and others for natural frequen-
cy ratio of a cantilever beam without a moving
mass and a fluid flow. In order to compare the
present results and others, the dimensions of
the beam with the rectangular cross—section are
L=0.2, the height of beam %#=0.0078 and d=
0.025 m.

3.2 Results for with tip mass

Figures 5 and 6 show the dimensionless tip-
displacement of a cracked cantilever pipe con-
veying fluid with a tip mass for U=0.5. The
horizontal axis scale is the position of a moving
mass, and the axis of the ordinates are the scale
of dimensionless tip—displacement of the cracked
cantilever pipe. Figures 5(a) and (b) represent
the tip—displacement of the cantilever pipe con-
veying fluid with a moving mass according to the
ratio of the tip mass to the its moment of inertia.
When the crack position is constant, as the crack

Table 1 Comparison of present results and others for natural frequeny ratio (cracked/uncracked) of a

cantilever beam

Crack position (&)

Crack depth <%>

02 0.25 0.4 0.6
Present result 0.2 0.99276 0.98803 0.96633 0.80523
esent res 0.4 0.99707 0.99512 0.98530 0.91074

. 0.2 0.9837 0.9614 08122
Kisa et al.(2000) 0.4 0.9933 0.9709 0.9091
Shen et al.(1990) 0.2 — 0.9817 0.9520 0.8213
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severity increases, the dimensionless tip-displace-
ment of the cantilever pipe conveying fluid is
increased. Generally, the tip-diaplacement of the
cantilever pipe is proportional to the ratio g. As
the ratio u, increases, the position of the moving
mass that makes the maximum tip—-displacement
of the cantilever pipe is moved to the free end
of the cnatilever pipe. In Fig. 6(a) for pp=1
and (=4, the maximum tip-displacement of the
cracked cantilever pipe occurs at £=0.53 and £=
0.59, a distance from the left-hand clamped end,
respectively. Figures 7 and 8 show the frequency
of the cracked cantilever pipe according to the tip
mass. The effect of the ratio p», on the frequency
of the cracked cantilever pipe for £&=0.3 and
6*=0.1 is shown in Fig. 7. Totally, the frequen-
cies of the cracked cantilever pipe are in inverse

01,48
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Fig. 7 Frequency of cracked cantilever pipe accord-
ing to the ratio (u,) for first mode (V =6.
8E- 3, U=0.5)

proportion to the ratio u,. The difference of fre-
quencies of the cracked cantilever pipe in the two
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Table 2 Frequency of cracked cantilever pipe conveying fluid with tip mass and its moment of inertia for first

mode (U=0.5, M,=0.3, £=0.5)

. 0*=0.15 £.=0.3
]0 MP * % *
£=0.1 £.=0.5 £.=0.8 0*=0.10 | 6*=0.15 | 6*=0.20
0.03 0.4322 0.4558 0.4602 0.4581 0.4477 0.4159
0 0.05 0.4212 0.4440 0.4485 0.4464 0.4361 0.4049
0.10 0.3968 0.4183 0.4225 0.4206 0.4107 0.3809
0.03 0.4219 0.4445 0.4490 0.4470 0.4367 0.4054
0.01 0.05 0.4115 0.4336 0.4380 0.4362 0.4259 0.3952
0.10 0.3887 0.4095 0.4138 0.4119 0.4021 0.3728
0.03 0.3867 0.4066 0.4109 0.4092 0.3994 0.3701
0.05 0.05 0.3787 0.3982 0.4025 0.4007 0.3911 0.3623
0.10 0.3607 0.3793 0.3834 0.3817 0.3725 0.3448
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Fig. 8 frequency of cracked cantilever pipe according to tip mass

case of un=3 and 1, =35 is about 6.25%. Figures
8(a) and (b) show the effect of crack position
and crack severity on the frequency of the cracked
cantilever pipe, respectively. In Fig. 8, the velocity
of fluid is 0.5 and a moving mass My is 0.3. In
Fig. 8, the frequencies of the cracked cantilever
pipe are in inverse proportion to the tip mass.
Table 2 represents the frequencies of the cracked
cantilever pipe conveying fluid with the tip mass
for M»=0.3, U=0.5 and £=0.5. In Table 2, the
unit of frequency is 1/7.

4. Conclusions

In this paper, the influences of the crack se-
verity and the tip mass have been studied on the
dynamic behavior of the cracked cantilever pipe
conveying fluid with a moving mass by the nu-

merical method. The cantilever pipe is modeled
by the Euler-Bernoulli beam theory. The equa-
tion of motion is derived by using Lagrange’s
equation. The cracked pipe has been treated as
two undamaged segments connected by a rota-
tional elastic spring at the cracked section. The
stiffness of the spring depends on the crack se-
verity and the geometry of the cracked section.
When the velocity of a moving mass is constant,
the influences of a moving mass, the velocity of
fluid flow, the crack, the tip mass and its moment
of inertia and the coupling of these factors on the
frequencies and tip-displacement of the cantilever
pipe are depicted. The main results of this study
are summarized as follows :

(1) The tip-displacement of the cracked pipe
is proportional to the crack severity. As the crack
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severity increases, the time that makes the maxi-
mum tip-displacement of the cracked pipe is
delayed.

(2) When the crack severity is constant, the
frequency of the cantilever pipe is getting small as
the moving mass moves to the free end of the
cantilever pipe.

(3) When the position of the moving mass
exists in the free end of cantilever pipe, the fre-
quency of the cantilever pipe conveying fluid is
more sensitive to the moving mass than to the
effect of the crack.

(4) As the ratio of tip mass to its moment of
inertia g, is increased, the position of the moving
mass that makes the maximum tip-displacement
of the pipe is moved to the free end of the can-
tilever pipe.

(5) The frequencies of the cracked cantilever
pipe are in inverse proportion to the ratio fm.

(6) These study results will contribute to the
safety test and stability estimation of structures
including a cracked pipe conveying fluid with a
moving mass and a tip mass.
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